Premium
SU‐E‐U‐02: In Vivo Study of Pulsed Focused Ultrasound Mediated Nanodroplet‐Encapsulated Chemo‐Therapeutic Agent for Treatment of Prostate Cancer
Author(s) -
Chen L,
Chen X,
Gupta R,
Cvetkovic D,
Wang B,
Ma C
Publication year - 2013
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4815155
Subject(s) - docetaxel , prostate cancer , medicine , lncap , prostate , urology , cancer , ultrasound , in vivo , oncology , nuclear medicine , radiology , biology , microbiology and biotechnology
Purpose: We developed techniques for the formulation of docetaxel encapsulated nanodroplets, which respond to ultrasound. This study aims to investigate the improvement of prostate cancer treatment by a novel drug delivery technique combining pulsed high intensity focused ultrasound (pHIFU) exposures and docetaxel encapsulated nanodroplets under MR image guidance using prostate cancers grown orthotopically in nude mice. Methods: Human prostate cancer (LNCaP) cells were implanted orthotopically. Tumor growth was monitored using MRI. When the tumors reached a designated volume of 91 ± 21 mm3, tumor bearing mice were randomly divided into 5 groups (n=5). Group 1 animals were treated with an IV injection of docetaxel‐encapsulated nanodroplets (DTX+ND) + pFUS. Animals in Group 2 were treated with pFUS alone. Animals in Group 3 were injected (IV) with docetaxel‐encapsulated nanodroplets (DTX+ND) alone, Group 4 received free docetaxel and Group 5 was used as control. The mean diameter of the drug‐loaded nanodroplets was 220 ± 30nm.Ultrasound treatment parameters were 1MHz, 25W acoustic power, 10% duty cycle and 60 seconds for each sonication. After treatment, animals were allowed to survive for 4 weeks. Tumor volumes were measured on MRI. Results: Compared with the control group, significant tumor growth delay was observed in Group 1 with p=0.039 at 4 weeks after treatment. There was no significant tumor growth delay observed for Group 2 (p=0.477), Group 3 (p=0.209) and Group 4 (p=0.476). Conclusion: Our preliminary results showed a great potential for prostate cancer therapy using targeted docetaxel + nanodroplets, which could be activated by pHIFU. More animal studies are warranted to confirm the results and to further optimize the docetaxel + nanodroplets delivery and pHIFU parameters.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom