Premium
Impact of variable RBE on proton fractionation
Author(s) -
Dasu Alexandru,
TomaDasu Iuliana
Publication year - 2013
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.4769417
Subject(s) - relative biological effectiveness , proton , linear energy transfer , proton therapy , fractionation , nuclear medicine , radiation therapy , radiobiology , dosimetry , irradiation , chemistry , physics , nuclear physics , medicine , radiology , organic chemistry
Purpose: To explore the impact of variable proton relative biological effectiveness (RBE) on dose fractionation for clinically relevant situations. A generic RBE = 1.1 is generally used for isoeffect calculations, while experimental studies showed that proton RBE varies with tissue type, dose, and linear energy transfer (LET).Methods: An analytical expression for the LET and α/β dependence of the linear‐quadratic (LQ) model has been used for proton simulations in parallel with the assumption of a generic RBE = 1.1. Calculations have been performed for ranges of LET values and fractionation sensitivities to describe clinically relevant cases, such as the treatment of head and neck and prostate tumors. Isoeffect calculations were compared with predictions from a generic RBE value and reported clinical results.Results: The generic RBE = 1.1 appears to be a reasonable estimate for the proton RBE of rapidly growing tissues irradiated with low LET radiation. However, the use of a variable RBE predicts larger differences for tissues with low α/β (both tumor and normal) and at low doses per fraction. In some situations these differences may appear in contrast to the findings from photon studies highlighting the importance of accurate accounting for the radiobiological effectiveness of protons. Furthermore, the use of variable RBE leads to closer predictions to clinical results.Conclusions: The LET dependence of the RBE has a strong impact on the predicted effectiveness of fractionated proton radiotherapy. The magnitude of the effect is modulated by the fractionation sensitivity and the fractional dose indicating the need for accurate analyses both in the target and around it. Care should therefore be employed for changing clinical fractionation patterns or when analyzing results from clinical studies for this type of radiation.