Premium
CT effective dose per dose length product using ICRP 103 weighting factors
Author(s) -
Huda Walter,
Magill Dennise,
He Wenjun
Publication year - 2011
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.3544350
Subject(s) - nuclear medicine , medicine , dosimetry , pelvis , abdomen , head and neck , effective dose (radiation) , radiology , surgery
Purpose: To generate effective dose per unit dose length product (E/DLP) conversion factors incorporating ICRP Publication 103 tissue weighting factors. Methods: Effective doses for CT examinations were obtained using the IMPACT Dosimetry Calculator using all 23 dose data sets that are offered by this spreadsheet. CT examinations were simulated for scans performed along the patient long axis for each dosimetry data set using a 4 cm beam width ranging from the upper thighs to top of the head. Five basic body regions (head, neck, chest, abdomen, and pelvis), as well as combinations of the regions (head/neck, chest/abdomen, abdomen/pelvis, and chest/abdomen/pelvis) and whole body CT scans were investigated. Correction factors were generated that can be applied to convert E/DLP conversion factors based on ICRP 60 data to conversion factors that are valid for ICRP 103 data (i.e.,E 103 / E 60). Results: Use of ICRP 103 weighting factors increase effective doses for head scans by ∼ 11 % , for chest scans by ∼ 20 % , and decrease effective doses for pelvis scans by ∼ 25 % . Current E/DLP conversion factors are estimated to be 2.4 μ Sv / mGy cm for head CT examinations and range between 14 and 20 μ Sv / mGy cm for body CT examinations. Conclusions: Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.