z-logo
Premium
SU‐GG‐T‐69: Comparison of Three Optimization Methods of BrachyVision™ for IORT Using HDR and HAM Applicator
Author(s) -
Zhuang T,
Steffey B,
Song H,
Craciunescu O
Publication year - 2010
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.3468455
Subject(s) - dosimetry , nuclear medicine , radius , volume (thermodynamics) , curvature , mathematics , biomedical engineering , materials science , geometry , medicine , physics , computer science , computer security , quantum mechanics
Purpose : To compare the three optimization methods in BrachyVision™ (Varian Medical Systems, Palo Alto, CA) for flat surface implants using the HAM applicator; To study the effect of curvature of a surface implant on dosimetry. Method and Materials : Flat surface implants were generated in BrachyVision™ using three different optimization strategies offered in BrachyVision™: geometrical optimization normalized to a reference point (GO), volume optimization using reference lines (VO_RL), and volume optimization using a PTV concept (VO_PTV). For each plan, the following indices were computed: the coverage index V(x) (percentage of target volume receiving x% of the prescription dose or more) and the homogeneity index HI(x) (=V(100)‐V(x), with x = 140). Two curved geometries, 9 and 20 cm radius, were considered. For each radius, 9 and 18 channels were planned first as if for a flat implant. The obtained dwell times were then directly transferred to corresponding channels in the curved geometry and dose distribution calculated. Another plan was generated using VO_PTV method based on the curved PTV. Plans were compared in terms of V(100) and HI(140) and DVHs for PTV and normal tissue. Results : 1. For flat implants, GO achieves worse coverage index (86.5 %) than the two VO techniques (95.3% and 95.5%). PTV DVHs are comparable between the two VO techniques. While the VO methods use similar optimization time, VO_RL is easier and quicker to setup thus is the fastest method to use. For both 9 and 18 channel HAM and both radii, the difference between the V(100) and HI(140) is minimal between plans generated with flat dwell times and curved dwell times. Conclusion : The VO_RL is the fastest method for planning a flat IORT HAM surface implant. For radius larger than 9 cm, a curved implant can be simplified as a flat implant with negligible dosimetric difference.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom