z-logo
Premium
Beam‐centric algorithm for pretreatment patient position correction in external beam radiation therapy
Author(s) -
Bose Supratik,
Shukla Himanshu,
Maltz Jonathan
Publication year - 2010
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.3327457
Subject(s) - rotation (mathematics) , beam (structure) , translation (biology) , collimator , computer science , algorithm , residual , isocenter , position (finance) , optics , mathematics , computer vision , physics , biochemistry , chemistry , finance , messenger rna , imaging phantom , economics , gene
Purpose: In current image guided pretreatment patient position adjustment methods, image registration is used to determine alignment parameters. Since most positioning hardware lacks the full six degrees of freedom (DOF), accuracy is compromised. The authors show that such compromises are often unnecessary when one models the planned treatment beams as part of the adjustment calculation process. The authors present a flexible algorithm for determining optimal realizable adjustments for both step‐and‐shoot and arc delivery methods. Methods: The beam shape model is based on the polygonal intersection of each beam segment with the plane in pretreatment image volume that passes through machine isocenter perpendicular to the central axis of the beam. Under a virtual six‐DOF correction, ideal positions of these polygon vertices are computed. The proposed method determines the couch, gantry, and collimator adjustments that minimize the total mismatch of all vertices over all segments with respect to their ideal positions. Using this geometric error metric as a function of the number of available DOF, the user may select the most desirable correction regime. Results: For a simulated treatment plan consisting of three equally weighted coplanar fixed beams, the authors achieve a 7% residual geometric error (with respect to the ideal correction, considered 0% error) by applying gantry rotation as well as translation and isocentric rotation of the couch. For a clinical head‐and‐neck intensity modulated radiotherapy plan with seven beams and five segments per beam, the corresponding error is 6%. Correction involving only couch translation (typical clinical practice) leads to a much larger 18% mismatch. Clinically significant consequences of more accurate adjustment are apparent in the dose volume histograms of target and critical structures. Conclusions: The algorithm achieves improvements in delivery accuracy using standard delivery hardware without significantly increasing total treatment session duration. It encourages parsimonious utilization of all available DOF. Finally, in certain cases, it obviates the need of a robotic couch having six DOF for the correction of patient displacement and rotations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here