Premium
Time‐efficient patient‐specific quantification of regional carotid artery fluid dynamics and spatial correlation with plaque burden
Author(s) -
LaDisa John F.,
Bowers Mark,
Harmann Leanne,
Prost Robert,
Doppalapudi Anil Vamsi,
Mohyuddin Tayyab,
Zaidat Osama,
Migrino Raymond Q.
Publication year - 2010
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.3292631
Subject(s) - computational fluid dynamics , medicine , ultrasound , hemodynamics , common carotid artery , shear stress , cardiology , statin , biomedical engineering , radiology , nuclear medicine , carotid arteries , materials science , mechanics , physics , composite material
Purpose: Low wall shear stress (WSS) and high oscillatory shear index (OSI) influence plaque formation, yet little is known about their role in progression/regression of established plaques because of lack of practical means to calculate them in individual patients. Our aim was to use computational fluid dynamics (CFD) models of patients with carotid plaque undergoing statin treatment to calculate WSS and OSI in a time‐efficient manner, and determine their relationship to plaque thickness (PT), plaque composition (PC), and regression. Methods: Eight patients ( 68 ± 9 yr , one female) underwent multicontrast 3 T MRI at baseline and six‐month post statin treatment. PT and PC were measured in carotid segments (common–CC, bifurcation–B, internal–IC) and circumferentially in nonoverlapping 60° angles and correlated with CFD models created from MRI, ultrasound, and blood pressure. Results: PT was highest in B ( 2.42 ± 0.98 versus CC: 1.60 ± 0.47 , IC: 1.62 ± 0.52 mm , p < 0.01 ). Circumferentially, plaque was greatest opposite the flow divider( p < 0.01 ) , where the lowest WSS and highest OSI were observed. In B and IC, PT was inversely related to WSS ( R = − 0.28 and −0.37, p < 0.01 ) and directly related to OSI ( R = 0.22 and 0.52, p < 0.05 ). The total plaque volume changed from 1140 ± 437 to 974 ± 587mm 3at six months( p = 0.1 ) . Baseline WSS, but not OSI, correlated with changes in PT, necrotic tissue, and hemorrhage in B and IC, but not CC. CFD modeling took 49 ± 18 h per patient. Conclusions: PT and PC correspond to adverse WSS and OSI in B and IC, and WSS is modestly but significantly related to changes in PT after short‐term statin treatment. Regional hemodynamics from CFD can feasibly augment routine clinical imaging for comprehensive plaque evaluation.