Premium
Single x‐ray absorptiometry method for the quantitative mammographic measure of fibroglandular tissue volume
Author(s) -
Malkov Serghei,
Wang Jeff,
Kerlikowske Karla,
Cummings Steven R.,
Shepherd John A.
Publication year - 2009
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.3253972
Subject(s) - imaging phantom , mammography , nuclear medicine , calibration , repeatability , breast tissue , tilt (camera) , digital mammography , volume (thermodynamics) , medicine , biomedical engineering , mathematics , physics , breast cancer , geometry , statistics , cancer , quantum mechanics
Purpose: This study describes the design and characteristics of a highly accurate, precise, and automated single‐energy method to quantify percent fibroglandular tissue volume (%FGV) and fibroglandular tissue volume (FGV) using digital screening mammography. Methods: The method uses a breast tissue‐equivalent phantom in the unused portion of the mammogram as a reference to estimate breast composition. The phantom is used to calculate breast thickness and composition for each image regardless of x‐ray technique or the presence of paddle tilt. The phantom adheres to the top of the mammographic compression paddle and stays in place for both craniocaudal and mediolateral oblique screening views. We describe the automated method to identify the phantom and paddle orientation with a three‐dimensional reconstruction least‐squares technique. A series of test phantoms, with a breast thickness range of 0.5–8 cm and a %FGV of 0%–100%, were made to test the accuracy and precision of the technique. Results: Using test phantoms, the estimated repeatability standard deviation equaled 2%, with a ±2% accuracy for the entire thickness and density ranges. Without correction, paddle tilt was found to create large errors in the measured density values of up to 7%/mm difference from actual breast thickness. This new density measurement is stable over time, with no significant drifts in calibration noted during a four‐month period. Comparisons of %FGV to mammographic percent density and left to right breast %FGV were highly correlated ( r = 0.83 and 0.94, respectively). Conclusions: An automated method for quantifying fibroglandular tissue volume has been developed. It exhibited good accuracy and precision for a broad range of breast thicknesses, paddle tilt angles, and %FGV values. Clinical testing showed high correlation to mammographic density and between left and right breasts.