Premium
A scheme for multisource interior tomography
Author(s) -
Wang Ge,
Yu Hengyong,
Ye Yangbo
Publication year - 2009
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.3157103
Subject(s) - iterative reconstruction , tomography , region of interest , computer vision , detector , artificial intelligence , computer science , physics , optics
Currently, x‐ray computed tomography (CT) requires source scanning so that projections can be collected from various orientations for image reconstruction. Limited by the scanning time, the temporal resolution of CT is often inadequate when rapid dynamics is involved in an object to be reconstructed. To meet this challenge, here the authors propose a scheme of multisource interior tomography for ultrafast imaging that reconstructs a relatively small region of interest (ROI). Specifically, such a ROI is irradiated in parallel with narrow x‐ray beams defined by many source‐detector pairs for data acquisition. This ROI can be then reconstructed using the interior tomography approach. To demonstrate the merits of this approach, the authors report interior reconstruction from in vivo lung CT data at a much reduced radiation dose, which is roughly proportional to the ROI size. The results suggest a scheme for ultrafast tomography (such as with a limited number of sources and in a scanning mode) to shorten data acquisition time and to suppress motion blurring.