z-logo
Premium
Search for IMRT inverse plans with piecewise constant fluence maps using compressed sensing techniques
Author(s) -
Zhu Lei,
Xing Lei
Publication year - 2009
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.3110163
Subject(s) - mathematical optimization , piecewise , pareto principle , algorithm , computer science , inverse problem , dosimetry , inverse , mathematics , nuclear medicine , mathematical analysis , medicine , geometry
An intensity‐modulated radiation therapy (IMRT) field is composed of a series of segmented beams. It is practically important to reduce the number of segments while maintaining the conformality of the final dose distribution. In this article, the authors quantify the complexity of an IMRT fluence map by introducing the concept of sparsity of fluence maps and formulate the inverse planning problem into a framework of compressing sensing. In this approach, the treatment planning is modeled as a multiobjective optimization problem, with one objective on the dose performance and the other on the sparsity of the resultant fluence maps. A Pareto frontier is calculated, and the achieved dose distributions associated with the Pareto efficient points are evaluated using clinical acceptance criteria. The clinically acceptable dose distribution with the smallest number of segments is chosen as the final solution. The method is demonstrated in the application of fixed‐gantry IMRT on a prostate patient. The result shows that the total number of segments is greatly reduced while a satisfactory dose distribution is still achieved. With the focus on the sparsity of the optimal solution, the proposed method is distinct from the existing beamlet‐ or segment‐based optimization algorithms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here