z-logo
Premium
Evaluation of dosimetric margins in prostate IMRT treatment plans
Author(s) -
Gordon J. J.,
Siebers J. V.
Publication year - 2008
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.2826558
Subject(s) - margin (machine learning) , nuclear medicine , mathematics , dosimetry , radiation treatment planning , prostate , medicine , radiation therapy , computer science , radiology , cancer , machine learning
This work introduces a new concept—the dosimetric margin distribution (DMD)—and uses it to explain the sensitivity of a group of prostate IMRT treatment plans to patient setup errors. Prior work simulated the effect of setup errors on 27 prostate IMRT treatment plans and found the plans could tolerate larger setup errors than predicted by the van Herk margin formula. The conjectured reason for this disagreement was a breakdown in van Herk's assumption that the planned dose distribution conforms perfectly to target structures. To resolve the disagreement, this work employed the same 27 plans to evaluate the actual margin distributions that exist between: (i) the clinical target volume (CTV) and planning target volume (PTV) and (ii) the CTV and PTV minimum dose isodose surface. These distributions were evaluated for both prostate and nodal targets. Distribution (ii) is the DMD. The dosimetric margin in a given direction determines the probability that the CTV will be underdosed due to setup errors in that direction. Averaging over 4 π sr gives the overall probability of CTV coverage. Minimum doses for prostate and nodal PTVs were obtained from dose volume histograms. Corresponding isodose surfaces were created and converted to regions of interest (ROIs). CTV, PTV, and isodose ROIs were saved as mesh files and then imported into a computational geometry application which calculated distances between meshes (i.e., margins) in 614 discrete directions covering 4 π sr in 10 deg increments. Measured prostate CTV‐to‐PTV margins were close to the nominal value of 0.5 cm specified in the treatment planning protocol. However, depending on direction, prostate dosimetric margins ranged from 0.5 to 3 cm, reflecting the imperfect conformance of the planned dose distribution to the prostate PTV. For the nodal CTV, the nominal CTV‐to‐PTV margin employed in treatment planning was again 0.5 cm. However, due to the planning protocol, the nodal PTV follows the surface of the nodal CTV in several places, ensuring that there is no room for rigid body motion of the nodal CTV inside the nodal PTV. Measured nodal CTV‐to‐PTV margins were therefore zero, while nodal dosimetric margins ranged from 0.2 to 2.8 cm. Prostate and nodal target coverage were found to be well correlated with the measured DMDs, thereby resolving the apparent disagreement with our prior results. The principal conclusion is that target coverage in the presence of setup errors should be evaluated using the DMD, rather than the CTV‐to‐PTV margin distribution. The DMD is a useful planning metric, which generalizes the ICRU conformity index. DMDs could vary with number of beams, beam arrangements, TPS, and treatment site.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here