z-logo
Premium
Maximum likelihood fitting of FROC curves under an initial‐detection‐and‐candidate‐analysis model
Author(s) -
Edwards Darrin C.,
Kupinski Matthew A.,
Metz Charles E.,
Nishikawa Robert M.
Publication year - 2002
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1118/1.1524631
Subject(s) - observer (physics) , computer science , receiver operating characteristic , pattern recognition (psychology) , artificial intelligence , set (abstract data type) , machine learning , physics , quantum mechanics , programming language
We have developed a model for FROC curve fitting that relates the observer's FROC performance not to the ROC performance that would be obtained if the observer's responses were scored on a per image basis, but rather to a hypothesized ROC performance that the observer would obtain in the task of classifying a set of “candidate detections” as positive or negative. We adopt the assumptions of the Bunch FROC model, namely that the observer's detections are all mutually independent, as well as assumptions qualitatively similar to, but different in nature from, those made by Chakraborty in his AFROC scoring methodology. Under the assumptions of our model, we show that the observer's FROC performance is a linearly scaled version of the candidate analysis ROC curve, where the scaling factors are just given by the FROC operating point coordinates for detecting initial candidates. Further, we show that the likelihood function of the model parameters given observational data takes on a simple form, and we develop a maximum likelihood method for fitting a FROC curve to this data. FROC and AFROC curves are produced for computer vision observer datasets and compared with the results of the AFROC scoring method. Although developed primarily with computer vision schemes in mind, we hope that the methodology presented here will prove worthy of further study in other applications as well.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here