z-logo
open-access-imgOpen Access
Automatic generation of digital terrain models from LiDAR and hyperspectral data using Bayesian networks
Author(s) -
Dominik Perpeet,
Wolfgang Groß,
Wolfgang Middelmann
Publication year - 2012
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.974614
Subject(s) - computer science , hyperspectral imaging , terrain , lidar , smoothing , digital elevation model , remote sensing , bayesian network , artificial intelligence , scale (ratio) , computer vision , data mining , geography , cartography
Various tasks such as urban development, terrain mapping or waterway and drainage modeling depend on digital terrain models (DTM) from large scale remote sensing data. Usually, DTM generation is a task requiring extensive manual interference. Previous attempts for automation are mostly based on determining the non-ground regions via fixed thresholds followed by smoothing operations. Thus, we propose a novel approach to automatically deduce a DTM from a digital surface model (DSM) with the aid of hyperspectral data. For this, advantages of a line scanning LiDAR system and a pushbroom hyperspectral sensor are combined to improve the result. We construct a hybrid Bayesian network (HBN), where modeled nodes can be discrete or continuous, and incorporate our already determined features. Using this network we determine probability estimates whether each point is part of terrain obstructions. While using two different sensor types supplies robust features, Bayesian networks can be automatically trained and adapted to specific scenarios such as mountainous or urban regions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom