Development of a laser-based process chain for manufacturing free form optics
Author(s) -
Sebastian Heidrich,
Annika Richmann,
Edgar Willenborg
Publication year - 2012
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.922407
Subject(s) - polishing , laser , optics , surface roughness , laser ablation , materials science , surface finish , process (computing) , ablation , surface finishing , radiation , mechanical engineering , computer science , engineering , physics , composite material , aerospace engineering , operating system
This paper presents the development of a laser based process chain for manufacturing fused silica optics. Due to disadvantages of conventional methods concerning costs and time when manufacturing optics with nonspherical shape, this process chain focuses on aspherical and free form surface geometries, but it is also capable of producing spherical optics. It consists of three laser based processing steps, which in combination produce the optics. In a first step, fused silica is ablated with laser radiation to produce the geometry of the optics. A subsequent laser polishing step reduces the surface roughness and a third step uses laser micro ablation to remove the last remaining redundant material. Most of the conducted experiments are carried out using CO 2 laser radiation, but it is also possible to ablate material with ultra short pulse laser radiation. Besides describing the experimental setup and the mechanisms of the ablation and polishing step, the paper presents and discusses results achieved to date. Although the process chain is still under development, the single process steps already reach promising results for themselves and moreover, first elements are manufactured using the first two process steps together
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom