z-logo
open-access-imgOpen Access
Simultaneous 1310/1550 dual-band swept laser source and fiber-based dual-band common-path swept source optical coherence tomography
Author(s) -
Youxin Mao,
Shoude Chang,
E. G. Murdock,
Costel Flueraru
Publication year - 2011
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.902617
Subject(s) - optical coherence tomography , optics , wavelength division multiplexing , materials science , optical tomography , laser , wavelength , narrowband , multi band device , physics , optoelectronics , telecommunications , computer science , antenna (radio)
A simultaneous two wavelength band swept laser source and a fiber-based dual-band common-path swept source optical coherence tomography is reported. Simultaneous 1310/1550 dual-wavelength tuning is performed by using two fiber-ring cavities with corresponding optical semiconductor amplifier as their gain mediums and two narrowband optical filters with a single dual-window polygonal scanner. Measured average output powers of 60 mW and 27 mW have been achieved for 1310 and 1550 nm bands, respectively, while the two wavelengths were swept simultaneously from 1227 nm to 1387 nm for 1310 nm band and from 1519 nm to 1581 nm for 1550 nm band at an A-scan rate of 65 kHz. A broadband 1310/1550 wavelength-division multiplexing is used for coupling two wavelengths into a common-path single-mode GRIN-lensed fiber probe to form a dual-band common-path swept-source optical coherence tomography. Simultaneous OCT imaging at 1310 and 1550 nm is achieved by using a depth ratio correction method. This technique allows potentially for in vivo endoscopic high-speed functional OCT imaging with high quality spectroscopic contrast with low computational costs. On the other hand, the common path configuration is able to reject common mode noise and potentially implement high stability quantitative phase measurements.Peer reviewed: YesNRC publication: Ye

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom