z-logo
open-access-imgOpen Access
Parylene-based uncooled thermomechanical array
Author(s) -
Onur Ferhanoğlu,
M. Fatih Toy,
Hakan Ürey
Publication year - 2009
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.818951
Subject(s) - materials science , detector , parylene , diffraction , optics , thermal , optoelectronics , finite element method , composite material , physics , polymer , meteorology , thermodynamics
Novel thermo-mechanical detector arrays with integrated diffraction grating for optical readout were designed and fabricated. Parylene was used as the structural material due to its high thermal isolation and mismatch properties. Calculations reveal that the NETD performance of a thermo-mechanical array using Parylene can be significantly better than SiNx based designs and offer a theoretical NETD value <10mK assuming an optical readout with a high dynamic range detector array. Finite Element simulations were performed with length of the bimaterial leg as the optimization parameter. It was observed that only a few microns of isolation leg supported 30 fps applications, leaving rest of the leg to be bimaterial and providing large thermo-mechanical deflections

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom