z-logo
open-access-imgOpen Access
Flow of blood-saline mixtures studied by time-domain optical coherence tomography
Author(s) -
Dan P. Popescu,
Michael G. Sowa
Publication year - 2009
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.808041
Subject(s) - optical coherence tomography , laminar flow , blood flow , optics , coherence (philosophical gambling strategy) , materials science , tomography , saline , biomedical engineering , optical tomography , turbulence , physics , mechanics , medicine , radiology , quantum mechanics , endocrinology
In-vitro analysis of flowing blood-saline mixtures is performed by time-domain optical coherence tomography imaging. The mixtures contain blood in concentrations ranging from 100% to 20%. For each image, a corresponding compounded profile is obtained by adding one thousand adjacent A-scans. The compounded profiles are used for characterizing the optical coherence tomography signal as it propagates within the studied blood\u2013saline mixtures. The results obtained point toward the possibility of acquiring intra-vascular images of arterial tissue that is located behind slabs of flowing blood-saline. A threshold in the propagation distance beyond which the recorded signal becomes dominated by its multiple scattered components is established along the compounded profiles. The threshold location, at a depth of ~0.6 mm, is independent of blood concentration. Further investigation of the compounded profiles reveals that the region extending to a maximum depth of about 200 \u3bcm from the point where the probing beam enters blood-saline mixtures could reveal information about the flow regime. This opens the possibility of another application for time-domain optical coherence tomography in intravascular imaging: assessing the flow regime, i.e. laminar or turbulent.Peer reviewed: YesNRC publication: Ye

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom