z-logo
open-access-imgOpen Access
Adaptive high-Q bandpass photonic RF filter
Author(s) -
Jessica Zheng,
Kamal Alameh,
Zhenglin Wang
Publication year - 2005
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.572599
Subject(s) - band pass filter , filter (signal processing) , optical filter , radio frequency , photonics , wideband , materials science , optoelectronics , electronic engineering , optics , computer science , physics , engineering , telecommunications , computer vision
In this paper, a MicroPhotonic-based high-Q tunable RF filter architecture is proposed. The architecture uses a Vertical Cavity Surface Emitting Laser (VCSEL) array, a 2D ultra-wideband photo-receiver array and a multi-cavity optical substrate to generate a large number of optical true-time delays thus achieving arbitrary, high-resolution RF filter transfer characteristics. By tuning the responses of the different optical cavities, adaptive high-Q RF filter characteristics can be realized over a wide RF frequency range. Proof-of-concept experimental results demonstrate the adaptability of the MicroPhotonic-based RF filter

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom