Novel optical wavelength interleaver based on symmetrically parallel-coupled and apodized ring resonator arrays
Author(s) -
Christopher J. Kaalund,
Zhe Jin,
Wei Li,
GangDing Peng
Publication year - 2003
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.504535
Subject(s) - passband , resonator , wavelength division multiplexing , interleaving , optical filter , ripple , coupling coefficient of resonators , insertion loss , apodization , wavelength , optics , crosstalk , channel spacing , band pass filter , q factor , electronic engineering , computer science , topology (electrical circuits) , physics , mathematics , engineering , combinatorics , quantum mechanics , voltage
Optical ring-resonators could be used to synthesize filters with low crosstalk and flat passbands. Their application to DWDM interleaving has been proposed and investigated previously. However, a number of important factors related to this topic have not yet been considered and appropriately addressed. In this paper, we propose a novel scheme of a symmetrically parallel-coupled ring resonator array with coupling apodisation. We show that it can be used to construct a wavelength interleaver with remarkably improved performance. Various design factors have been considered. An optimization procedure was developed based on minimizing the channel crosstalk in the through and drop ports simultaneously by adjusting the ring-bus coupling coefficients. We show that apodisation in coupling could suppress channel crosstalk effectively, by choosing the optimal coupling coefficients. We also introduced the equalization of both the input and output coupling coefficients to minimise passband ripple. For a 50 - 100 GHz DWDM applications, four rings is found to be the best choice for array size. A four-ring filter achieves crosstalk -24 dB, insertion loss at resonance <1 dB, and good passband flatness (shape factor >0.6)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom