Sea surface simulation for testing of multiband imaging sensors
Author(s) -
Frédéric Schwenger,
Endre Repasi
Publication year - 2003
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.488472
Subject(s) - radiance , remote sensing , sky , geology , polarization (electrochemistry) , surface wave , optics , physics , meteorology , chemistry
Present systems simulate sea surfaces either in the visible or in the IR band. A physics based 3D simulation of sea surfaces for the calculation of images for multiband cameras is presented here. Dynamic sea surfaces, composed of smooth wind-driven gravity waves, are generated by means of time dependent statistical models. In addition, choppy waves are modeled to improve the realism of the rough sea. The appearance of the sea in the visible and thermal bands is modeled. Sea surface radiance in the IR band is calculated with respect to the reflected sky radiance and the emitted sea surface radiance. Sun glint simulations in the visible and IR are presented. Polarization effects were incorporated to enhance the physical realism. As an example for an application a real-time animation of a sea surface with floating foreground objects is shown. The simulated images of the sea surface are in good accordance with real images
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom