z-logo
open-access-imgOpen Access
Evapotranspiration partitioning assessment using a machine-learning-based leaf area index and the two-source energy balance model with sUAV information
Author(s) -
Rui Gao,
Alfonso F. TorresRua,
Ayman Nassar,
Joseph G. Alfieri,
Mahyar Aboutalebi,
Lawrence E. Hipps,
Nicolas B. Ortiz,
Andrew J. McElrone,
Calvin Coopmans,
William P. Kustas,
William A. White,
L. McKee,
María Mar Alsina,
Nick Dokoozlian,
Luis Sánchez,
John H. Prueger,
Héctor Nieto,
Nurit Agam
Publication year - 2021
Publication title -
pubmed central
Language(s) - English
Resource type - Conference proceedings
DOI - 10.1117/12.2586259
Subject(s) - evapotranspiration , leaf area index , environmental science , eddy covariance , transpiration , energy balance , water balance , remote sensing , irrigation scheduling , computer science , soil science , ecosystem , soil water , ecology , botany , photosynthesis , geotechnical engineering , engineering , biology , geology

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom