z-logo
open-access-imgOpen Access
MRI subcortical segmentation in neurodegeneration with cascaded 3D CNNs
Author(s) -
Hao Li,
Huahong Zhang,
Hans J. Johnson,
Jeffrey D. Long,
Jane S. Paulsen,
Ipek Oguz
Publication year - 2021
Publication title -
pubmed central
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
pISSN - 0277-786X
DOI - 10.1117/12.2582005
Subject(s) - segmentation , artificial intelligence , sørensen–dice coefficient , convolutional neural network , pattern recognition (psychology) , computer science , generalizability theory , image segmentation , neuroimaging , putamen , neuroscience , psychology , mathematics , statistics
The subcortical structures of the brain are relevant for many neurodegenerative diseases like Huntington's disease (HD). Quantitative segmentation of these structures from magnetic resonance images (MRIs) has been studied in clinical and neuroimaging research. Recently, convolutional neural networks (CNNs) have been successfully used for many medical image analysis tasks, including subcortical segmentation. In this work, we propose a 2-stage cascaded 3D subcortical segmentation framework, with the same 3D CNN architecture for both stages. Attention gates, residual blocks and output adding are used in our proposed 3D CNN. In the first stage, we apply our model to downsampled images to output a coarse segmentation. Next, we crop the extended subcortical region from the original image based on this coarse segmentation, and we input the cropped region to the second CNN to obtain the final segmentation. Left and right pairs of thalamus, caudate, pallidum and putamen are considered in our segmentation. We use the Dice coefficient as our metric and evaluate our method on two datasets: the publicly available IBSR dataset and a subset of the PREDICT-HD database, which includes healthy controls and HD subjects. We train our models on only healthy control subjects and test on both healthy controls and HD subjects to examine model generalizability. Compared with the state-of-the-art methods, our method has the highest mean Dice score on all considered subcortical structures (except the thalamus on IBSR), with more pronounced improvement for HD subjects. This suggests that our method may have better ability to segment MRIs of subjects with neurodegenerative disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here