
Projection-domain metal artifact correction using a dual layer detector
Author(s) -
Linxi Shi,
N. Robert Bennett,
Josh StarLack,
Minghui Lu,
Adam Wang
Publication year - 2020
Publication title -
medical imaging 2020: physics of medical imaging
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
pISSN - 0277-786X
DOI - 10.1117/12.2547936
Subject(s) - dual layer , artifact (error) , detector , projection (relational algebra) , dual (grammatical number) , layer (electronics) , computer science , domain (mathematical analysis) , computer vision , artificial intelligence , materials science , algorithm , mathematics , telecommunications , mathematical analysis , composite material , art , literature
Metal artifact remains a challenge in cone-beam CT images. Many two-pass metal artifact reduction methods have been proposed, which work fairly well, but are limited when the metal is outside the scan field-of-view (FOV) or when the metal is moving during the scan. In the former, even reconstructing with a larger FOV does not guarantee a good estimate of metal location in the projections; and in the latter, the metal location in each projection is difficult to identify due to motion. Furthermore, two-pass methods increase the total reconstruction time. In this study, a projection-based metal detection and correction method with a dual layer detector is investigated. The dual layer detector provides dual energy images with perfect temporal and spatial registration in each projection, which aid in the identification of metal. A simple phantom with metal wires (copper) and a needle (steel) is used to evaluate the projection-based metal artifact reduction method from a dual layer scan and compared with that of a single layer scan. Preliminary results showed enhanced ability to identify metal regions, leading to substantially reduced metal artifact in reconstructed images. In summary, an effective single-pass, projection-domain method using a dual layer detector has been demonstrated, and it is expected to be robust against truncation and motion.