Identification and correction of road courses by merging successive segments and using improved attributes
Author(s) -
Dimitri Bulatov,
Gisela Häufel,
Melanie Pohl
Publication year - 2016
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.2239208
Subject(s) - generalization , computer science , identification (biology) , vectorization (mathematics) , computation , artificial intelligence , semantics (computer science) , orthophoto , pattern recognition (psychology) , computer vision , algorithm , mathematics , mathematical analysis , botany , parallel computing , biology , programming language
Both in military and civil applications, there is an urgent need for a highly up-to-date road data, which should be ideally semantically structured (into main roads, walking paths, escape ways, etc.) with application-driven attributes, such as road width, road type, surface condition and many others. A vectorization algorithm processing aerial images recently acquired yields an up-to-date road vector data, which are, however, often represented by wriggly, noisy polylines without semantics. The reasons for zigzagged street courses are insufficiencies in the intermediate results of sensor data processing (orthophotos, elevation maps) and occlusions caused by trees, buildings, and others. In the current contribution, an improved computation of geometric attributes will be explained which makes a difference between straight and circular (or elliptic) polylines. Using improved attributes, the candidates for polylines having identical course and sharing a junction are determined. From such candidates, we form chains of polylines. These chains correspond better to the intuitive perception of the term street than the previously used road polylines, because, even after being interrupted by narrower side roads, a chain maintains its label. The generalization of chains with simultaneously adjusting positions of junctions is evidently performed. We apply a generalization with the purpose-based modification of a well-known polyline simplification algorithm once chain-wise and once polyline-wise in order to show - by means of qualitative results - the advantages of the chain-wise generalization
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom