Brightness and average power as driver for advancements in diode lasers and their applications
Author(s) -
Stefan Hengesbach,
Reinhart Poprawe,
D. H. H. Hoffmann,
Martin Traub,
Thomas Schwarz,
Carlo Holly,
Florian Eibl,
Andreas Weisheit,
Sabrina Vogt,
Simon Britten,
Michael Ungers,
Ulrich Thombansen,
Christoph Engelmann,
Viktor Mamuschkin,
Philipp Lott
Publication year - 2015
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.2085068
Subject(s) - laser , materials science , optoelectronics , semiconductor laser theory , optics , diode , brightness , computer science , physics
Spatial and spectral emission characteristics and efficiency of high-power diode laser (HPDL) based pump sources enable and define the performance of the fundamental solid state laser concepts like disk, fiber and slab lasers. HPDL are also established as a versatile tool for direct materials processing substituting other laser types like CO2 lasers and lamp pumped solid state lasers and are starting to substitute even some of the diode pumped solid state lasers. Both, pumping and direct applications will benefit from the further improvement of the brightness and control of the output spectrum of HPDL. While edge emitting diodes are already established, a new generation of vertical emitting diode lasers (VCSELs) made significant progress and provides easy scalable output power in the kW range. Beneficial properties are simplified beam shaping, flexible control of the temporal and spatial emission, compact design and low current operation. Other characteristics like efficiency and brightness of VCSELs are still lagging behind the edge emitter performance. Examples of direct applications like surface treatment, soldering, welding, additive manufacturing, cutting and their requirements on the HPDL performance are presented. Furthermore, an overview on process requirements and available as well as perspective performance of laser sources is derived
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom