Extraction and refinement of building faces in 3D point clouds
Author(s) -
Melanie Pohl,
Jochen Meidow,
Dimitri Bulatov
Publication year - 2013
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.2028625
Subject(s) - ransac , point cloud , computer science , 3d city models , roof , delaunay triangulation , outlier , segmentation , noise (video) , artificial intelligence , computer vision , field (mathematics) , pruning , matching (statistics) , algorithm , image (mathematics) , mathematics , agronomy , statistics , visualization , biology , structural engineering , pure mathematics , engineering
In this paper, we present an approach to generate a 3D model of an urban scene out of sensor data. The first milestone on that way is to classify the sensor data into the main parts of a scene, such as ground, vegetation, buildings and their outlines. This has already been accomplished within our previous work. Now, we propose a four-step algorithm to model the building structure, which is assumed to consist of several dominant planes. First, we extract small elevated objects, like chimneys, using a hot-spot detector and handle the detected regions separately. In order to model the variety of roof structures precisely, we split up complex building blocks into parts. Two different approaches are used: To act on the assumption of underlying 2D ground polygons, we use geometric methods to divide them into sub-polygons. Without polygons, we use morphological operations and segmentation methods. In the third step, extraction of dominant planes takes place, by using either RANSAC or J-linkage algorithm. They operate on point clouds of sufficient confidence within the previously separated building parts and give robust results even with noisy, outlier-rich data. Last, we refine the previously determined plane parameters using geometric relations of the building faces. Due to noise, these expected properties of roofs and walls are not fulfilled. Hence, we enforce them as hard constraints and use the previously extracted plane parameters as initial values for an optimization method. To test the proposed workflow, we use both several data sets, including noisy data from depth maps and data computed by laser scanning
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom