Multi-element, high-temperature integrated ultrasonic transducers for structural health monitoring
Author(s) -
Jocelyn Veilleux,
S. E. Kruger,
Kuo-Ting Wu,
Alain Blouin
Publication year - 2013
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.2009868
Subject(s) - ultrasonic sensor , transducer , materials science , broadband , structural health monitoring , piezoelectricity , structural element , acoustics , phased array , electronic engineering , electrical engineering , computer science , engineering , composite material , telecommunications , physics , antenna (radio)
This paper reports recent developments on high-temperature, multi-element integrated ultrasonic transducers (IUTs). The multi-element IUTs are fabricated from a sol-gel route, where piezoelectric films are deposited, poled and machined into an array of 16 elements. Electrical wiring and insulation are also integrated into a practical, simple high-temperature assembly. These multi-element IUTs show a high potential for structural health monitoring at high temperatures (in the 200-500\ub0C range): they can withstand thermal cycling and shocks, they can be integrated to complex geometries, and they have broadband and suitable operating frequency characteristics with a minimal footprint (no backing needed). The specifics of multi-element transducers, including the phased array approach, for structural health monitoring are discussed.Peer reviewed: NoNRC publication: Ye
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom