z-logo
open-access-imgOpen Access
Multi-element, high-temperature integrated ultrasonic transducers for structural health monitoring
Author(s) -
Jocelyn Veilleux,
S. E. Kruger,
Kuo-Ting Wu,
Alain Blouin
Publication year - 2013
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.2009868
Subject(s) - ultrasonic sensor , transducer , materials science , broadband , structural health monitoring , piezoelectricity , structural element , acoustics , phased array , electronic engineering , electrical engineering , computer science , engineering , composite material , telecommunications , physics , antenna (radio)
This paper reports recent developments on high-temperature, multi-element integrated ultrasonic transducers (IUTs). The multi-element IUTs are fabricated from a sol-gel route, where piezoelectric films are deposited, poled and machined into an array of 16 elements. Electrical wiring and insulation are also integrated into a practical, simple high-temperature assembly. These multi-element IUTs show a high potential for structural health monitoring at high temperatures (in the 200-500\ub0C range): they can withstand thermal cycling and shocks, they can be integrated to complex geometries, and they have broadband and suitable operating frequency characteristics with a minimal footprint (no backing needed). The specifics of multi-element transducers, including the phased array approach, for structural health monitoring are discussed.Peer reviewed: NoNRC publication: Ye

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom