z-logo
open-access-imgOpen Access
Thermal stability and mechanical properties of amorphous coatings in the Ti-B-Si-Al-N system grown by cathodic arc evaporation from TiB2, Ti33Al67, and Ti85Si15 cathodes
Author(s) -
Hanna Fager,
Jon M. Andersson,
Jens Jensen,
Jun Lu,
Lars Hultman
Publication year - 2014
Publication title -
journal of vacuum science and technology a vacuum surfaces and films
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.583
H-Index - 112
eISSN - 1520-8559
pISSN - 0734-2101
DOI - 10.1116/1.4897170
Subject(s) - materials science , nanocrystalline material , amorphous solid , annealing (glass) , microstructure , tin , metallurgy , coating , cathodic protection , thermal stability , evaporation , chemical engineering , composite material , anode , crystallography , nanotechnology , electrode , chemistry , engineering , physics , thermodynamics
Ti-B-Al-N, Ti-B-Si-N, and Ti-B-Si-Al-N coatings were grown on cemented carbide substrates in an industrial scale cathodic arc evaporation system using Ti33Al67, Ti85Si15, and TiB2 cathodes in a reactiveN2 atmosphere. The microstructure of the as-deposited coatings changes from nanocrystalline to amorphous with addition of (B+Si+Al), or high amounts of (B+Si) to TiN. In the as-deposited state, the 4 μm-thick amorphous coatings are dense and homogenous, besides slight compositional modulation with Ti-rich layers induced by rotation of the substrate holder fixture during deposition, and have unusually few macroparticles. Annealing at temperatures ranging from 700 °C to 1100 °C results in that the coatings crystallize by clustering of TiN grains. The hardness of as-deposited amorphous coatings is 17-18 GPa, and increases to 21 GPa following annealing at 800 °C. At annealing temperatures of 1000 °C and above the hardness decreases due to inter-diffusion of Co from the substrate to the coating

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom