Probe current, probe size, and the practical brightness for probe forming systems
Author(s) -
M. S. Bronsgeest,
J. Barth,
L. W. Swanson,
P. Kruit
Publication year - 2008
Publication title -
journal of vacuum science and technology b microelectronics and nanometer structures processing measurement and phenomena
Language(s) - English
Resource type - Journals
eISSN - 1520-8567
pISSN - 1071-1023
DOI - 10.1116/1.2907780
Subject(s) - brightness , optics , thermionic emission , microscope , cathode ray , beam (structure) , materials science , electron , optoelectronics , physics , quantum mechanics
Probe size, shape, and current are important parameters for the performance of all probe forming systems such as the scanning (transmission) electron microscope, the focused ion beam microscope, and the Gaussian electron beam lithography system. Currently, however, the relation between probe current and probe size is ill defined. The key lies in a lacking definition of “size.” This problem is solved with the introduction of the “practical brightness.” In literature, many different definitions of “brightness” can be found, but for systems in which the whole of the virtual source is imaged onto the target, it is the practical brightness of a source that determines how much current is in the probe. This means that only with the practical brightness the performance of a probe forming system can be calculated quantitatively. The beauty of the practical brightness is that this source property is unaffected by the quality of the column: without interactions between electrons in the beam, the practical brightness is conserved down to the target. This makes it the only relevant brightness for probe forming systems to be used to compare different sources. The practical brightness can be measured, but can also be calculated when the source intensity profile is known. The Gaussian source intensity profile of thermionic, Schottky, and cold field emitters yields a practical brightness of 1.44ej/????, where j is the current density on the emitting surface and ??? is the average tangential electron energy.IST/Imaging Science and TechnologyApplied Science
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom