z-logo
open-access-imgOpen Access
Modeling Nanosecond-Pulsed Spark Discharge and Flame Kernel Evolution
Author(s) -
Joohan Kim,
Vyaas Gururajan,
Riccardo Scarcelli,
Sayan Biswas,
Isaac Ekoto
Publication year - 2021
Publication title -
journal of energy resources technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.615
H-Index - 48
eISSN - 1528-8994
pISSN - 0195-0738
DOI - 10.1115/1.4051144
Subject(s) - ignition system , combustion , materials science , nuclear engineering , laminar flame speed , combustor , kernel (algebra) , premixed flame , spark (programming language) , mechanics , minimum ignition energy , automotive engineering , chemistry , computer science , thermodynamics , physics , engineering , mathematics , programming language , organic chemistry , combinatorics
Dilute combustion, either using exhaust gas recirculation or with excess air, is considered a promising strategy to improve the thermal efficiency of internal combustion engines. However, the dilute air-fuel mixture, especially under intensified turbulence and high-pressure conditions, poses significant challenges for ignitability and combustion stability, which may limit the attainable efficiency benefits. In-depth knowledge of the flame kernel evolution to stabilize ignition and combustion in a challenging environment is crucial for effective engine development and optimization. To date, a comprehensive understanding of ignition processes that result in the development of fully predictive ignition models usable by the automotive industry does not yet exist. Spark-ignition consists of a wide range of physics that includes electrical discharge, plasma evolution, joule-heating of gas, and flame kernel initiation and growth into a self-sustainable flame. In this study, an advanced approach is proposed to model spark-ignition energy deposition and flame kernel growth. To decouple the flame kernel growth from the electrical discharge, a nanosecond-pulsed high-voltage discharge is used to trigger spark-ignition in an optically accessible small ignition test vessel with a quiescent mixture of air and methane. Initial conditions for the flame kernel, including its thermodynamic state and species composition, are derived from a plasma-chemical equilibrium calculation. The geometric shape and dimension of the kernel are characterized using a multi-dimensional thermal plasma solver. The proposed modeling approach is evaluated using a high-fidelity computational fluid dynamics procedure to compare the simulated flame kernel evolution against flame boundaries from companion Schlieren images.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom