Experimental Characterization and Numerical Modeling of the Interaction Between Carbon Fiber Composite Prepregs During a Preforming Process
Author(s) -
Weizhao Zhang,
Xuan Ma,
Jie Lü,
Zixuan Zhang,
Q. Jane Wang,
Xuming Su,
Danielle Zeng,
Mansour Mirdamadi,
Jian Cao
Publication year - 2018
Publication title -
journal of manufacturing science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.366
H-Index - 98
eISSN - 1528-8935
pISSN - 1087-1357
DOI - 10.1115/1.4039979
Subject(s) - materials science , composite material , composite number , lubricant , finite element method , compression molding , molding (decorative) , sheet moulding compound , transfer molding , fiber , mechanical engineering , structural engineering , engineering , mold
Carbon fiber reinforced composites have received growing attention because of their superior performance and high potential for lightweight systems. An economic method to manufacture the parts made of these composites is a sequence of forming followed by a compression molding. The first step in this sequence is called preforming that forms the prepreg, which is the fabric impregnated with the uncured resin, to the product geometry, while the molding process cures the resin. Slip between different prepreg layers is observed in the preforming step, and it is believed to have a non-negligible impact on the resulting geometry. This paper reports a method to characterize the interaction between different prepreg layers, which should be valuable for future predictive modeling and design optimization. An experimental device was built to evaluate the interactions with respect to various industrial production conditions. The experimental results were analyzed for an in-depth understanding about how temperature, relative sliding speed, and fiber orientation affect the tangential interaction between two prepreg layers. Moreover, a hydro-lubricant model was introduced to study the relative motion mechanism of this fabric-resin-fabric system, and the results agreed well with the experiment data. The interaction factors obtained from this research will be implemented in a preforming process finite element simulation model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom