Numerical Study of Laminar Flow and Mass Transfer for In-Line Spacer-Filled Passages
Author(s) -
Steven Beale,
Jon G. Pharoah,
Ashwani Kumar
Publication year - 2012
Publication title -
journal of heat transfer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.722
H-Index - 126
eISSN - 1528-8943
pISSN - 0022-1481
DOI - 10.1115/1.4007651
Subject(s) - laminar flow , reynolds number , mechanics , mass transfer , duct (anatomy) , mass flux , flow (mathematics) , mass transfer coefficient , materials science , flow conditioning , physics , thermodynamics , turbulence , medicine , pathology
Performance calculations for laminar fluid flow and mass transfer are presented for a passage containing cylindrical spacers configured in an inline-square arrangement, typical of those employed in the process industries. Numerical calculations are performed for fully-developed flow, based on stream-wise periodic conditions for a unit cell and compared with those obtained for developing regime in a row of ten such units. The method is validated for an empty passage, i.e., a plane duct. Results are presented for the normalized mass transfer coefficient and driving force, as a function of mean flow Reynolds number, and also the wall mass flux, or blowing parameter. Both constant and variable wall velocities were considered, the latter being typical of those found in many practical membrane modules.Peer reviewed: YesNRC publication: Ye
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom