z-logo
open-access-imgOpen Access
The NOx and N2O Emission Characteristics of an HCCI Engine Operated With n-Heptane
Author(s) -
Hailin Li,
W. Stuart Neill,
Hongsheng Guo,
Wally Chippior
Publication year - 2011
Publication title -
journal of energy resources technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.615
H-Index - 48
eISSN - 1528-8994
pISSN - 0195-0738
DOI - 10.1115/1.4005243
Subject(s) - nox , combustion , homogeneous charge compression ignition , nitrogen oxide , nitrous oxide , environmental science , heptane , range (aeronautics) , ignition system , soot , chemistry , automotive engineering , materials science , combustion chamber , thermodynamics , engineering , physics , composite material , organic chemistry
This paper presents the oxides of nitrogen (NOx ) and nitrous oxide (N2 O) emission characteristics of a Cooperative Fuel Research (CFR) engine modified to operate in homogeneous charge compression ignition (HCCI) combustion mode. N-heptane was used as the fuel in this research. Several parameters were varied, including intake air temperature and pressure, air/fuel ratio (AFR), compression ratio (CR), and exhaust gas recirculation (EGR) rate, to alter the HCCI combustion phasing from an overly advanced condition where knocking occurred to an overly retarded condition where incomplete combustion occurred with excessive emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO). NOx emissions below 5 ppm were obtained over a fairly wide range of operating conditions, except when knocking or incomplete combustion occurred. The NOx emissions were relatively constant when the combustion phasing was within the acceptable range. NOx emissions increased substantially when the HCCI combustion phasing was retarded beyond the optimal phasing even though lower combustion temperatures were expected. The increased N2 O and UHC emissions observed with retarded combustion phasing may contribute to this unexpected increase in NOx emissions. N2 O emissions were generally less than 0.5 ppm; however, they increased substantially with excessively retarded and incomplete combustion. The highest measured N2 O emissions were 1.7 ppm, which occurred when the combustion efficiency was approximately 70%.Peer reviewed: YesNRC publication: Ye

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom