z-logo
Premium
Dynamic cortical lateralization during olfactory discrimination learning
Author(s) -
Cohen Yaniv,
Putrino David,
Wilson Donald A.
Publication year - 2015
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2014.288381
Subject(s) - piriform cortex , neuroscience , psychology , lateralization of brain function , olfactory system , context (archaeology) , hippocampus , biology , paleontology
Key points Odour discrimination and memory involve changes in the primary olfactory (piriform) cortex. The results obtained in the present study suggest that there is an asymmetry in piriform cortical change, with learning‐related changes in cortical oscillations emerging with different time courses over the course of multiday training in the left and right piriform cortices in rats. There is an initial decrease in coherence between the left and right piriform cortices during the early stages of the odour discrimination task, which recovers as the animals approach criterion performance. This decreased coherence is expressed when the animals are performing the task relative to when they are in their home cage. The results suggest a transient cortical asymmetry during learning and raise new questions about the functions and mechanisms of cerebral lateralization.Abstract Bilateral cortical circuits are not necessarily symmetrical. Asymmetry, or cerebral lateralization, allows functional specialization of bilateral brain regions and has been described in humans for such diverse functions as perception, memory and emotion. There is also evidence for asymmetry in the human olfactory system, although evidence in non‐human animal models is lacking. In the present study, we took advantage of the known changes in olfactory cortical local field potentials that occur over the course of odour discrimination training to test for functional asymmetry in piriform cortical activity during learning. Both right and left piriform cortex local field potential activities were recorded. The results obtained demonstrate a robust interhemispheric asymmetry in anterior piriform cortex activity that emerges during specific stages of odour discrimination learning, with a transient bias toward the left hemisphere. This asymmetry is not apparent during error trials. Furthermore, functional connectivity (coherence) between the bilateral anterior piriform cortices is learning‐ and context‐dependent. Steady‐state interhemispheric anterior piriform cortex coherence is reduced during the initial stages of learning and then recovers as animals acquire competent performance. The decrease in coherence is seen relative to bilateral coherence expressed in the home cage, which remains stable across conditioning days. Similarly, transient, trial‐related interhemispheric coherence increases with task competence. Taken together, the results demonstrate transient asymmetry in piriform cortical function during odour discrimination learning until mastery, suggesting that each piriform cortex may contribute something unique to odour memory.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here