Premium
Rapid mapping of visual receptive fields by filtered back projection: application to multi‐neuronal electrophysiology and imaging
Author(s) -
Johnston Jamie,
Ding Huayu,
Seibel Sofie H.,
Esposti Federico,
Lagnado Leon
Publication year - 2014
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2014.276642
Subject(s) - receptive field , computer science , projection (relational algebra) , artificial intelligence , computer vision , electrode array , electrophysiology , orientation (vector space) , retina , neuroscience , pattern recognition (psychology) , physics , biology , mathematics , algorithm , geometry , quantum mechanics , voltage
Key points To understand vision, we must measure the spatio‐temporal receptive field of neurons in the visual system. We describe how the filtered back projection can be used to map the receptive fields of many neurons simultaneously, within a few minutes. This method can also reveal complex features of visual receptive fields such as the tuning of orientation selective neurons and the contributions from separate ON and OFF components. We demonstrate that the filtered back projection is suited to mapping receptive fields from populations of neurons recorded with imaging or electrophysiology and should therefore prove useful for investigations of visual processing throughout the visual pathway.Abstract Neurons in the visual system vary widely in the spatiotemporal properties of their receptive fields (RFs), and understanding these variations is key to elucidating how visual information is processed. We present a new approach for mapping RFs based on the filtered back projection (FBP), an algorithm used for tomographic reconstructions. To estimate RFs, a series of bars were flashed across the retina at pseudo‐random positions and at a minimum of five orientations. We apply this method to retinal neurons and show that it can accurately recover the spatial RF and impulse response of ganglion cells recorded on a multi‐electrode array. We also demonstrate its utility for in vivo imaging by mapping the RFs of an array of bipolar cell synapses expressing a genetically encoded Ca 2+ indicator. We find that FBP offers several advantages over the commonly used spike‐triggered average (STA): (i) ON and OFF components of a RF can be separated; (ii) the impulse response can be reconstructed at sample rates of 125 Hz, rather than the refresh rate of a monitor; (iii) FBP reveals the response properties of neurons that are not evident using STA, including those that display orientation selectivity, or fire at low mean spike rates; and (iv) the FBP method is fast, allowing the RFs of all the bipolar cell synaptic terminals in a field of view to be reconstructed in under 4 min. Use of the FBP will benefit investigations of the visual system that employ electrophysiology or optical reporters to measure activity across populations of neurons.