Premium
Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: neurotransmitters, projections and target cells
Author(s) -
Jankowska E.,
Bannatyne B. A.,
Stecina K.,
Hammar I.,
Cabaj A.,
Maxwell D. J.
Publication year - 2009
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2008.159236
Subject(s) - commissure , neuroscience , interneuron , excitatory postsynaptic potential , biology , inhibitory postsynaptic potential , anatomy
The aim of this study was to analyse neurotransmitter content, projection areas and target cells of commissural interneurons with input from group I and/or II muscle afferents in lumbar segments in the cat. Axonal projections of 15 intracellularly labelled commissural interneurons were reconstructed. Ten interneurons (nine located in laminae VI–VII, one in lamina VIII) were glutamatergic; only one interneuron (located in lamina VIII) was glycinergic. Contralateral terminal projections were found both in motor nuclei and within laminae VI–VIII. In order to identify target cells of commissural interneurons, effects of stimulation of contralateral group I and II muscle afferents were investigated on interneurons within these laminae. Three tests were used: intracellular records from individual interneurons, modulation of probability of activation of extracellularly recorded interneurons and modulation of their actions on motoneurons using disynaptic PSPs evoked in motoneurons as a measure. All these tests revealed much more frequent and/or stronger excitatory actions of contralateral afferents. The results indicate that commissural interneurons with input from contralateral group I and II afferents target premotor interneurons in disynaptic pathways from ipsilateral group I and II afferents and that excitatory disynaptic actions of contralateral afferents on these interneurons are mediated primarily by intermediate zone commissural interneurons. A second group of commissural interneurons activated by reticulospinal neurons, previously described, frequently had similar, but occasionally opposing, actions to the cells described here, thus indicating that these two subpopulations may act on the same premotor interneurons and either mutually enhance or counteract each other's actions.