z-logo
Premium
Aerobic metabolism underlies complexity and capacity
Author(s) -
Koch Lauren G.,
Britton Steven L.
Publication year - 2008
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2007.144709
Subject(s) - multicellular organism , oxygen , electronegativity , corollary , biology , cellular respiration , ecology , chemistry , evolutionary biology , mitochondrion , genetics , mathematics , gene , organic chemistry , pure mathematics
The evolution of biological complexity beyond single‐celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here