Premium
Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models
Author(s) -
Warren Gordon L.,
Summan Mukesh,
Gao Xin,
Chapman Rebecca,
Hulderman Tracy,
Simeonova Petia P.
Publication year - 2007
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2007.132373
Subject(s) - skeletal muscle , gene , extracellular matrix , gene expression , biology , microbiology and biotechnology , pathology , medicine , genetics , anatomy
Common acute injuries to skeletal muscle can lead to significant pain and disability. The current therapeutic approaches for treating muscle injuries are dependent on the clinical severity but not on the type of injury. In the present studies, the pathophysiology and molecular pathways associated with two different types of skeletal muscle injury, one induced by direct destruction of muscle tissue (i.e. FI) and the other induced by a contractile overload (more specifically high‐force eccentric contractions, i.e. CI) were compared side by side. Histopathological evaluation and measurements of muscle strength were accompanied by analyses of expression for 12 488 known genes at four time points ranging from 6 h to 7 days after injury. Real‐time RT‐PCR was used to confirm some of the injury type differences in the temporal profiles of gene expression. Our data revealed several pools of genes, including early induction of transcription, myogenic and stress‐responsive factors, common for both types of injury as well as pools of genes expressed specifically with one of the injury types. Only CI activated a set of genes associated with the repair of impaired proteins and structures including genes related to apoptosis, whereas FI uniquely activated gene sets involved in extensive inflammatory responses, tissue remodelling, angiogenesis and myofibre/extracellular matrix synthesis. In conclusion, knowledge of the sets of genes associated specifically with the nature of the injury may have application for development of new strategies for acceleration of the recovery process in injured skeletal muscle.