z-logo
Premium
Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport
Author(s) -
Lin PingChang,
Kreutzer Ulrike,
Jue Thomas
Publication year - 2007
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2006.116061
Subject(s) - myoglobin , diffusion , chemistry , skeletal muscle , in vivo , biophysics , intracellular , nuclear magnetic resonance , biochemistry , anatomy , biology , thermodynamics , physics , microbiology and biotechnology
Current theory of respiratory control invokes a role of myoglobin (Mb)‐facilitated O 2 diffusion in regulating the intracellular O 2 flux, provided Mb diffusion can compete effectively with free O 2 diffusion. Pulsed‐field gradient NMR methods have now followed gradient‐dependent changes in the distinct 1 H NMR γ CH 3 Val E11 signal of MbO 2 in perfused rat myocardium to obtain the endogenous Mb translational diffusion coefficient ( D Mb ) of 4.24 × 10 −7 cm 2 s −1 at 22°C. The D Mb matches precisely the value predicted by in vivo NMR rotational diffusion measurements of Mb and shows no orientation preference. Given values in the literature for the Krogh's free O 2 diffusion coefficient ( K 0 ), myocardial Mb concentration and a partial pressure of O 2 that half saturates Mb ( P 50 ), the analysis yields an equipoise diffusion P   O   2of 1.77 mmHg, where Mb and free O 2 contribute equally to the O 2 flux. In the myocardium, Mb‐facilitated O 2 diffusion contributes increasingly more than free O 2 diffusion when the P   O   2falls below 1.77 mmHg. In skeletal muscle, the P   O   2must fall below 5.72 mmHg. Altering the Mb P 50 induces modest change. Mb‐facilitated diffusion has a higher poise in skeletal muscle than in myocardium. Because the basal P   O   2hovers around 10 mmHg, Mb does not have a predominant role in facilitating O 2 transport in myocardium but contributes significantly only when cellular oxygen falls below the equipoise diffusion P   O   2.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom