z-logo
Premium
Origin of spontaneous rhythmicity in smooth muscle
Author(s) -
McHale Noel,
Hollywood Mark,
Sergeant Gerard,
Thornbury Keith
Publication year - 2006
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2005.098376
Subject(s) - neuroscience , anatomy , chemistry , biology
Rhythmic electrical activity is a feature of most smooth muscles but the mechanical consequences can vary from regular rapid phasic contractions to sustained contracture. For many years it was thought that spontaneous electrical activity originated in smooth muscle cells but recently it has become apparent that there are specialized pacemaker cells in many organs that are morphologically and functionally distinct from smooth muscle and that the former cells are the source of spontaneous electrical activity. Such a pacemaker function is well documented for the ICC of the gastrointestinal tract but evidence is accumulating that ICC‐like cells play a similar role in other types of smooth muscle. We have recently shown that there are specialized pacemaking cells in the rabbit urethra which are spontaneously active when freshly isolated, readily distinguishable from smooth muscle cells under bright field illumination and relatively easy to study using patch‐clamp and confocal imaging techniques. Recent results suggest that calcium oscillations in isolated rabbit urethral interstitial cells are initiated by calcium release from ryanodine sensitive intracellular stores, that oscillation frequency is very sensitive to the external calcium concentration and that conversion of the primary oscillation to a propagated calcium wave depends upon IP 3 ‐induced calcium release.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here