Premium
Nuclear transfer in rodents
Author(s) -
Mullins Linda J.,
Wilmut Ian,
Mullins John J.
Publication year - 2004
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2003.049742
Subject(s) - cloning (programming) , reprogramming , biology , offspring , somatic cell nuclear transfer , inefficiency , genome , genetics , reproduction , somatic cell , evolutionary biology , embryo , pregnancy , cell , gene , computer science , embryogenesis , blastocyst , microeconomics , economics , programming language
Cloning is the asexual reproduction of an individual, such that the offspring have an essentially identical nuclear genome. Nuclear transfer and cloning have been achieved in a number of species, namely sheep, cows, goats, rabbits, cats and mice, but have been largely unsuccessful, so far, in dogs, primates and rats. Clearly, contributory factors which affect the outcome of successful cloning experiments are not universally applicable to all species. One theme common to all cloning experiments, however, is the overall inefficiency of the process, typically 0–4%. A number of factors contribute to nuclear transfer inefficiency, and we will review mouse cloning experiments, which address these problems, highlighting the importance of donor nucleus choice (somatic or ES cell, fetal or adult, quiescent or actively dividing). Finally, we will summarize the emerging principles which appear to govern nuclear reprogramming and production of clones, and will consider the application of nuclear transfer to the rat.