
The time course of the motoneurone afterhyperpolarization is related to motor unit twitch speed in human skeletal muscle
Author(s) -
E. Roderich Gossen
Publication year - 2003
Publication title -
journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2003.048132
Subject(s) - afterhyperpolarization , motor unit , electrophysiology , isometric exercise , motor unit recruitment , muscle contraction , electromyography , neuroscience , motor neuron , spike potential , contraction (grammar) , chemistry , anatomy , medicine , biology , spinal cord , depolarization
The relationship between the electrophysiological properties of motoneurones and their muscle units has been established in animal models. A functionally significant relationship exists whereby motoneurones with long post-spike afterhyperpolarizations (AHPs) innervate slow contracting muscle units. The purpose of this study was to determine whether the time course of the AHP as measured by its time constant is associated with the contractile properties of its muscle unit in humans. Using an intramuscular fine wire electrode, 46 motor units were recorded in eight subjects as they held a low force contraction of the first dorsal interosseus muscle for approximately 10 min. By applying a recently validated transform to the interspike interval histogram, the mean voltage versus time trajectory of the motoneurone AHP was determined. Spike-triggered averaging was used to extract the muscle unit twitch from the whole muscle force with strict control over force variability and motor unit discharge rate (interspike intervals between 120 and 200 ms). The AHP time constant was positively correlated to the time to half-force decay (rho = 0.36, P < 0.05) and twitch duration (rho = 0.57, P < 0.001); however, time to peak force failed to reach significance (rho = 0.27, P < 0.07). These results suggest that a similar functional relationship exists in humans between the motoneurone AHP and the muscle unit contractile properties.