z-logo
open-access-imgOpen Access
Inhibition of small-conductance Cl- channels by the interleukin-1 -stimulated production of superoxide in rabbit gastric parietal cells
Author(s) -
Hideki Sakai,
Yuta Ohira,
Akiko Tanaka,
Toshiya Suzuki,
Akira Ikari,
Magotoshi Morii,
Noriaki Takeguchi
Publication year - 2003
Publication title -
journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2003.041921
Subject(s) - parietal cell , chemistry , patch clamp , superoxide , superoxide dismutase , biophysics , microbiology and biotechnology , receptor , medicine , gastric mucosa , biology , biochemistry , stomach , oxidative stress , enzyme
We have shown previously that the G protein-coupled production of superoxide anion (O2-) leads to closure of small-conductance Cl- channels (0.3-0.4 pS) in the basolateral membrane of rabbit parietal cells. In the present study, effects of interleukin-1beta (IL-1beta) on the Cl- channel were investigated. In the whole-cell patch-clamp recording, IL-1beta (0.3-10 ng ml-1) inhibited the whole-cell Cl- current recorded from a parietal cell within isolated rabbit gastric glands. Variance noise analysis of the whole-cell Cl- current showed that the single channel conductance of the Cl- channel that is sensitive to IL-1beta is 0.37 pS. The IL-1beta (1 ng ml-1)-induced decrease of the Cl- current was abolished by anti-IL-1beta antibody (2 microg ml-1), recombinant IL-1 receptor antagonist (500 ng ml-1), GDPbetaS (500 microM) and superoxide dismutase (100 units ml-1), a scavenger of O2-. Northern blot analysis showed that the mRNA of the IL-1 receptor was selectively expressed in rabbit gastric parietal cells. In the dihydrofluorescein diacetate-loaded single parietal cells in gastric glands, IL-1beta (0.3-10 ng ml-1) stimulated the production of oxygen radicals. Y-27632 (1-10 microM), a specific Rho-kinase inhibitor, and fluvastatin (10 microM), an indirect inhibitor for Rho proteins, significantly inhibited the IL-1beta-induced effects on the channel activity and production of oxygen radicals. IL-1beta (0.3-10 ng ml-1) activated Rho in the parietal cells. These results indicate that IL-1beta binds to the IL-1 receptor of gastric parietal cells and inhibits the small-conductance Cl- channel via the G protein-mediated Rho/Rho-kinase-dependent production of O2-.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here