z-logo
open-access-imgOpen Access
Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons
Author(s) -
Mark A. Smith,
Graham C. R. EllisDavies,
Jeffrey C. Magee
Publication year - 2003
Publication title -
journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2002.036376
Subject(s) - schaffer collateral , neuroscience , ampa receptor , excitatory postsynaptic potential , postsynaptic potential , apical dendrite , synapse , dendritic spine , soma , silent synapse , pyramidal cell , hippocampal formation , biology , glutamate receptor , chemistry , receptor , inhibitory postsynaptic potential , biochemistry
Schaffer collateral axons form excitatory synapses that are distributed across much of the dendritic arborization of hippocampal CA1 pyramidal neurons. Remarkably, AMPA-receptor-mediated miniature EPSP amplitudes at the soma are relatively independent of synapse location, despite widely different degrees of dendritic filtering. A progressive increase with distance in synaptic conductance is thought to produce this amplitude normalization. In this study we examined the mechanism(s) responsible for spatial scaling by making whole-cell recordings from the apical dendrites of CA1 pyramidal neurons. We found no evidence to suggest that there is any location dependence to the range of cleft glutamate concentrations found at Schaffer collateral synapses. Furthermore, we observed that release probability (Pr), paired-pulse facilitation and the size of the readily releasable vesicular pool are not dependent on synapse location. Thus, there do not appear to be any changes in the fundamental presynaptic properties of Schaffer collateral synapses that could account for distance-dependent scaling. On the other hand, two-photon uncaging of 4-methoxy-7-nitroindolinyl-caged L-glutamate onto isolated dendritic spines shows that the number of postsynaptic AMPA receptors per spine increases with distance from the soma. We conclude, therefore, that the main synaptic mechanism involved in the production of distance-dependent scaling of Schaffer collateral synapses is an elevated postsynaptic AMPA receptor density.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here