z-logo
Premium
Reflex Responses in the Lower Leg following Landing Impact on an Inverting and Non‐Inverting Platform
Author(s) -
Grüneberg C.,
Nieuwenhuijzen P. H. J. A.,
Duysens J.
Publication year - 2003
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2002.036244
Subject(s) - ankle , reflex , stretch reflex , triceps surae muscle , inversion (geology) , medicine , physical medicine and rehabilitation , anatomy , jump , electromyography , geology , physics , anesthesia , seismology , tectonics , quantum mechanics
In the lower leg, landing after a jump induces reflexes, the role of which is not well understood. This is even more so for reflexes following landing on inverting surfaces. The latter condition is of special interest since ankle inversion traumata are one of the most common injuries during sport. Most studies have investigated ankle inversions during a static standing condition. However, ankle injuries occur during more dynamic activities such as jumping. Therefore, the present study aimed at reproducing these situations but in a completely safe setting. EMG responses were recorded after landing on an inverting surface, which caused a mild ankle inversion of 25 deg of rotation (in a range sufficient to elicit reflexes but safe enough to exclude sprains). The results are compared with data from landing on a non‐inverting surface to understand the effect of the inversion. In general, landing on the platform resulted in short and long latency responses (SLR and LLR) in triceps surae (soleus, gastrocnemius medialis and lateralis) and peroneal muscles (long and short peroneal) but not in the tibialis anterior muscle. Landing on the inverting platform caused significant LLRs in the peroneal muscles (which underwent the largest stretch) but not in the triceps muscles. Conversely, landing on a non‐inverting platform induced larger SLRs in triceps than in the peroneal muscles. Although the peroneal LLRs thus appeared to be selectively recruited in an inverting perturbation, their role during such perturbations should be limited since the latency of these responses was about 90 ms while the inversion lasts only 42 ms. The SLRs, if present, had an onset latency of around 44 ms. In the period following the inversion, however, the responses may be important in preventing further stretch of these muscles.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here