z-logo
open-access-imgOpen Access
Na+ channel inactivation: a comparative study between pancreatic islet -cells and adrenal chromaffin cells in rat
Author(s) -
Xuelin Lou,
Xiao Yu,
Xiaoke Chen,
Kailai Duan,
Liming He,
Anlian Qu,
Tao Xu,
Zhuan Zhou
Publication year - 2003
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2002.034405
Subject(s) - hyperpolarization (physics) , chromaffin cell , membrane potential , endocrinology , enteroendocrine cell , medicine , patch clamp , chemistry , biophysics , electrophysiology , biology , microbiology and biotechnology , adrenal medulla , endocrine system , catecholamine , hormone , organic chemistry , nuclear magnetic resonance spectroscopy
A comparative study was carried out on the inactivation of Na+ channels in two types of endocrine cells in rats, beta-cells and adrenal chromaffin cells (ACCs), using patch-clamp techniques. The beta-cells were very sensitive to hyperpolarization; the Na+ currents increased ninefold when the holding potential was shifted from -70 mV to -120 mV. ACCs were not sensitive to hyperpolarization. The half-inactivation voltages were -90 mV (rat beta-cells) and -62 mV (ACCs). The time constant for recovery from inactivation at -70 mV was 10.5 times slower in beta-cells (60 ms) than in ACCs (5.7 ms). The rate of Na+-channel inactivation at physiological resting potential was more than three times slower in beta-cells than in ACCs. Na+ influx through Na+ channels had no effect on the secretory machinery in rat beta-cells. However, these 'silent Na+ channels' could contribute to the generation of action potentials in some conditions, such as when the cell is hyperpolarized. It is concluded that the fractional availability of Na+ channels in beta-cells at a holding potential of -70 mV is about 15 % of that in ACCs. This value in rat beta-cells is larger than that observed in mouse (0 %), but is smaller than those observed in human or dog (90 %).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom