z-logo
Premium
Properties of mEPSCs recorded in layer II neurones of rat barrel cortex
Author(s) -
Simkus Christopher R. L.,
Stricker Christian
Publication year - 2002
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.2002.022095
Subject(s) - excitatory postsynaptic potential , barrel cortex , tetrodotoxin , chemistry , neuroscience , biophysics , postsynaptic current , somatosensory system , ampa receptor , inhibitory postsynaptic potential , electrophysiology , sodium channel , slice preparation , nmda receptor , biology , sodium , receptor , biochemistry , organic chemistry
Voltage‐clamp recordings from layer II neurones in somatosensory cortex of rats aged between 12 and 17 days showed a high frequency of spontaneous postsynaptic currents (sPSCs), which on average was 33 ± 13 Hz ( s.d .). sPSCs were mediated largely by glutamatergic AMPA receptors. Their rates and amplitudes were independent of blocking sodium channels with 1 μ m tetrodotoxin (TTX). Most of them, therefore, represent genuine miniature excitatory postsynaptic currents (mEPSCs). The rise time of the fastest (10 %) mEPSCs was 288 ± 86 μs (10‐90 %) and the half‐width was 1073 ± 532 μs. The amplitude was −5.9 ± 1.1 pA with a coefficient of variation (CV) of 0.44 ± 0.14. The rate of mEPSCs was very temperature sensitive with a Q 10 (33‐37 °C) of 8.9 ± 0.9. Due to this temperature sensitivity, we estimated that the microscope lamp contributed an increase in temperature of about 4 °C to the tissue in the focal volume of the condenser. Cell‐type differences in the rate of mEPSCs were found between pyramidal/multipolar and bipolar cells. The latter had a frequency of about a third of that seen in the other cell groups. Recordings in layer II are ideally suited to investigate mechanisms of spontaneous transmitter release.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here