z-logo
Premium
Inhibition of nitroxidergic nerve function by neurogenic acetylcholine in monkey cerebral arteries.
Author(s) -
Toda N,
Ayajiki K,
Okamura T
Publication year - 1997
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1997.sp021871
Subject(s) - acetylcholine , vasoactive intestinal peptide , muscarinic acetylcholine receptor , endocrinology , medicine , atropine , chemistry , physostigmine , neurotransmitter , cholinergic , tachyphylaxis , vasodilation , neuropeptide , receptor , biology
1. Modification by endogenous or exogenous acetylcholine and vasoactive intestinal polypeptide (VIP) of vasodilatation mediated by nitric oxide (NO) released from nitroxidergic nerves was studied in isolated monkey cerebral arteries. In arterial strips denuded of endothelium, transmural electrical stimulation (2‐20 Hz) produced relaxations that were abolished by tetrodotoxin. 2. The relaxation response was attenuated by acetylcholine, and the attenuation was reversed by atropine. Attenuation was also observed with AF‐DX 116, an antagonist of the muscarinic acetylcholine receptor subtype, M2. NO‐induced relaxation was not affected by acetylcholine. Neurogenic relaxation was also inhibited by physostigmine and potentiated by atropine. 3. VIP in concentrations that elicited slight relaxation did not alter the response to nerve stimulation. In the strips showing tachyphylaxis to VIP, the neurogenic response was not inhibited. 4. Histochemical studies of whole‐mount preparations revealed nerve fibres with NO synthase and VIP immunoreactivity, and also acetylcholinesterase, suggesting the presence of perivascular nitroxidergic, VIPergic and cholinergic innervation. 5. It is concluded that the actions of nitroxidergic nerve fibres on the monkey cerebral artery are inhibited by nerve‐released acetylcholine acting on prejunctional muscarinic receptors, possibly of the M2 subtype. Despite the presence of VIP immunoreactive nerve fibres and the ability of exogenous VIP to relax the artery, there is no evidence supporting either a prejunctional modulation of nitroxidergic nerve function by VIP or a role for VIP as a vasodilatory neurotransmitter.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here