z-logo
Premium
Spatiotemporal analysis of calcium dynamics in the nucleus of hamster oocytes.
Author(s) -
Shirakawa H,
Miyazaki S
Publication year - 1996
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1996.sp021473
Subject(s) - hamster , dynamics (music) , nucleus , calcium , neuroscience , chemistry , microbiology and biotechnology , biophysics , biology , physics , endocrinology , organic chemistry , acoustics
1. Subcellular Ca2+ dynamics inside and around the nucleus of immature hamster oocytes were analysed with confocal Ca2+ imaging. 2. The ratio value between emission intensity of two injected fluorescent Ca2+ indicators, Calcium Green and Fura Red, was almost uniform over the entire oocyte, suggesting that nucleoplasmic Ca2+ concentration ([Ca2+]n) is comparable to cytoplasmic Ca2+ concentration ([Ca2+]c) at the resting state. 3. When Ca2+ was iontophoretically injected into the nucleoplasm or the perinuclear cytoplasm, it diffused across the nuclear envelope (NE), and perinuclear [Ca2+]c and [Ca2+]n reached the same level within 2 s, although the NE worked as a weak but detectable barrier for Ca2+ diffusion. 4. Inositol 1,4,5‐trisphosphate (IP3)‐induced Ca2+ release from the NE through the inner membrane was not detected, even when a large amount of IP3 was delivered in close proximity to the inner nuclear membrane. 5. When an oocyte was uniformly stimulated by photolysis of caged IP3, a Ca2+ rise was initiated in the perinuclear cytoplasm. The [Ca2+]n rise was always delayed with respect to, but rapidly equilibrated with, the [Ca2+]c rise. 6. Clusters of the endoplasmic reticulum were located in the perinuclear cytoplasm and served as the trigger zone of IP3‐induced Ca2+ release. 7. The results indicate that the [Ca2+]n rise occurs as the consequence of the influx of Ca2+ which was released in the perinuclear cytoplasm, not Ca2+ release from NE to the nucleoplasm.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom