Premium
Inhibition of inwardly rectifying K+ current by external Ca2+ ions in freshly isolated rabbit osteoclasts.
Author(s) -
Yamashita N,
Ishii T,
Ogata E,
Matsumoto T
Publication year - 1994
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1994.sp020354
Subject(s) - depolarization , biophysics , chemistry , membrane potential , pertussis toxin , divalent , extracellular , intracellular , gtp' , biochemistry , g protein , receptor , biology , organic chemistry , enzyme
1. Regulation of membrane potential by extracellular Ca2+ concentration ([Ca2+]o) was examined in freshly isolated rabbit osteoclasts. 2. The resting membrane potential of osteoclasts was close to the K+ equilibrium potential in 1 mM Ca2+ medium. An elevation of [Ca2+]o caused membrane depolarization, accompanied by a decrease in the membrane conductance. 3. The inwardly rectifying K+ current observed under voltage clamp was dose‐dependently inhibited by an elevation of [Ca2+]o, which explained the membrane depolarization caused by high [Ca2+]o. 4. Other divalent cations also inhibited the inwardly rectifying K+ current with the following order of potency: Ca2+ < Ni2+ < or = Co2+ < Cd2+. 5. In the presence of intracellular GTP gamma S the inwardly rectifying K+ current was irreversibly inhibited by [Ca2+]o, whereas the inhibition of the inwardly rectifying K+ current was greatly attenuated by intracellular application of GDP beta S. 6. Pertussis toxin (PTX) treatment did not abolish the inhibition of the inwardly rectifying K+ current caused by [Ca2+]o. 7. These results suggest that inwardly rectifying K+ channels in osteoclasts were regulated by a PTX‐insensitive G‐protein, which was coupled to the putative Ca2+ receptor or sensor on the cell membrane.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom