z-logo
Premium
The actions of extracellular H+ on the electrophysiological properties of isolated human detrusor smooth muscle cells.
Author(s) -
Fry C H,
Gallegos C R,
Montgomery B S
Publication year - 1994
Publication title -
the journal of physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.802
H-Index - 240
eISSN - 1469-7793
pISSN - 0022-3751
DOI - 10.1113/jphysiol.1994.sp020341
Subject(s) - extracellular , intracellular , acidosis , intracellular ph , biophysics , chemistry , electrophysiology , biochemistry , medicine , endocrinology , biology
1. The influence of extracellular pH changes on intracellular pH and [Ca2+], as well as on L‐type Ca2+ currents, has been investigated in isolated human detrusor smooth muscle cells. 2. Alteration of extracellular pH by changing superfusate PCO2 also changed intracellular pH. A change of superfusate pH made by altering the [NaHCO3] at constant PCO2 was not reflected in a change in intracellular pH. 3. Extracellular acidosis attenuated the magnitude and rate of change of intracellular [Ca2+] evoked by raising the extracellular [KCl]. 4. Extracellular acidosis attenuated the rate of rise and amplitude of the action potential, as well as the magnitude of the L‐type Ca2+ current. In the pH range 6.78‐7.62 no alteration to the voltage dependence of Ca2+ current activation or inactivation was recorded. 5. A close proportional relationship between tension generated by multicellular strips and the magnitude of peak inward Ca2+ current in isolated cells was noted over a wide range of the two variables using a number of interventions, including alteration to extracellular pH, [Ca2+] and [Mg2+]. 6. Extracellular acidosis attenuated the magnitude of caffeine‐dependent intracellular Ca2+ transients and the resting [Ca2+]i between transients. Acidosis was without effect on the rise of [Ca2+]i induced by carbachol. 7. The results suggest that the negative inotropic effect of extracellular acidosis can be accounted for by attenuation of the L‐type Ca2+ current. The results also imply that intracellular stores are influenced by transmembrane Ca2+ fluxes at rest and that such fluxes are also attenuated by extracellular H+.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here